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est (SPT) is perhaps one of the most effective tests for quick and inexpensive
evaluation of the mechanical properties of soil layers. There have been numerous studies directed towards
establishment of correction factors for SPT blow count (NSPT) and correlations between NSPT and the
properties of cohesionless soils. However, the test method is commonly used in all types of soils. It is,
therefore, necessary to investigate the applicability of the correction factors and develop the appropriate
correlations for fine-grained soils.
In order to investigate the relevancy of the overburden correction factor for NSPT in fine-grained soils, as well
as establishing a correlation between undrained shear strength of such soils with NSPT, a data bank of SPT
results on low plasticity fine-grained soils has been compiled. The effect of natural moisture content,
plasticity index and effective overburden stress on the correlation of SPT–N60 and undrained shear strength
of the soils has been studied by the use of Group Method of Data Handling (GMDH) type neural network
optimized with genetic algorithms (GA).
Through this study a correlation has been obtained, expressing undrained shear strength of low-plasticity
(PIb20) fine-grained soils in terms of SPT–N60, PI and effective overburden stress. It has also been shown that
natural moisture content has negligible effect on the correlation. The performance of this correlation was
compared with other available correlations for this type of soil, and it has been shown that appreciable
improvement in prediction of the output has been achieved.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction
Evaluation of the mechanical properties of soil layers is the major
concern in geotechnical engineering and a basic requirement of any
field and laboratory investigation. Various methods and test proce-
dures have been developed for this purpose. However, each category
of tests has some drawbacks.

Due to the lack of meticulous theoretical formulization of the
correlation between the results of in situ tests and engineering
parameters of soil, the only plausible method is empirical derivation
based on various regression procedures. Perhaps due to its simplicity
Standard Penetration Test (SPT) has received the greatest attention
amongst the in situ tests from both academic researchers and
professional geotechnical engineers, and is thought to remain as an
essential part of soil exploration practice for decades to come (Horn,
1979). However, contrary to the implication by its name, the SPT is not
completely standardized (Clayton, 1995; Sivrikaya and Toğrol, 2006)
and its results are affected by many factors such as test equipment,
98 2177889843.
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drilling procedure, as well as soil types and conditions. This fact has
brought about the need for correction of test results.

McGregor and Duncan (1998) have presented the most compre-
hensive equation for SPT–N correction;

N60 = CBCCCRCBFCSCACEð ÞNfield ð1Þ

where:
CB borehole diameter correction factor,
CC hammer cushion correction factor,
CR rod length correction factor,
CBF blow count frequency correction factor,
CS liner correction factor,
CA anvil correction factor,
CE energy correction factor.

In addition to the above mentioned correction factors, the effect
of overburden pressure can also be accounted for by inclusion of CN
correction factor, adjusting the blow count for 100 kPa effective
overburden stress. However, since this correction factor was initially
intended for sandy soils, there are differing opinions about the
application of this factor to fine-grained soils. It is argued that in fine-
grained soils, undrained condition exists during the test, and thus
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Table 1
qu–NSPT relations for fine-grained soils in accordance with consistency (Terzaghi and
Peck, 1967)

Consistency NSPT qu (kPa)

Very soft b2 b25
Soft 2–4 25–50
Medium 4–8 50–100
Stiff 8–15 100–200
Very stiff 15–30 200–400
Hard N30 N400
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correction for the effect of overburden stress is not justified (Saran,
1996; McGregor and Duncan, 1998). Nevertheless, Sivrikaya and
Toğrol (2006) have quoted that such correction is useful at deep
conditions. Schmertmann (1975) has suggested that an increase in
overburden stress might produce proportional increase in undrained
shear strength of the soil. Furthermore, it has been suggested pre-
viously (Skempton,1954; Hansbo,1957) that undrained shear strength
of fine-grained soils does depend on effective overburden stress. Now,
as the SPT is commonly used in all types of soils, it is of great
importance to geotechnical engineers to knowwhether it is necessary
for fine-grained soils to correct the blow counts for effective over-
burden stress or not.

A different possible approach to this issue is to leave the effective
overburden stress out of the above-mentioned correction procedure
and instead include any possible effect into the correlation of SPT–N
with shear strength parameter. It has also been shown that the
plasticity of fine-grained soils influences the correlation of SPT–Nwith
shear strength parameters (be it corrected or not). Adding the possible
effect of moisture content onto such correlation produces a multi-
parametric problem. To the authors' knowledge, there has not been a
study considering the effect of all these parameters simultaneously.

The inter-dependencies of the involved factors in such problems
prohibit the use of simple regression analysis and need a more ex-
tensive and sophisticatedmethod. A possible research approach to the
issue is to use Artificial Neural Networks (ANN). This method seems
to be a viable method for development of correlations in a multi-
parametric problem. Sonmez et al. (2006) has outlined the advantages
of ANN-based models over multiple regression-based models.

System identification techniques are applied in many fields in
order to model and predict the behaviors of unknown and/or very
complex systems based on given input-output data (Söderström
and Stoica, 2002). In this way, soft-computing methods, which con-
cern computation in an imprecise environment, have gained sig-
nificant attention (Sanchez et al., 1997). Many research efforts have
been expended to use evolutionary methods as effective tools of soft-
computing methods for system identification such as those by
Kristinson and Dumont (1992), Koza (1992), Iba et al. (1993), and
Rodríguez-Vázquez (1999). Among these methodologies, Group
Method of Data Handling (GMDH) algorithm is a self-organizing
approach by which gradually complicatedmodels are generated based
on the evaluation of their performances on a set of multi-input-single-
output data pairs (xi, yi) (i=1, 2,…,M). The GMDHwas first developed
by Ivakhnenko (1971) as a multivariate analysis method for complex
system modelling and identification, which can be used to model
complex systems without having specific knowledge of the systems.
The main idea of GMDH is to build an analytical function in a feedf-
orward network based on a quadratic node transfer function whose
coefficients are obtained using regression technique (Farlow, 1984). In
recent years, however, the use of such self-organizing networks has
led to successful application of the GMDH-type algorithm in a broad
range of areas in engineering, science, and economics (e.g. Farlow,
1984; Iba et al., 1996; Mueller and Lemke, 2000; Nariman-Zadeh et al.,
2002, 2003 and 2005).

Moreover, there have been many efforts in recent years to deploy
genetic algorithms in the design of artificial neural networks (Porto,
1997; Yao, 1999). Recently, genetic algorithms have been used in a
feedforward GMDH-type neural network for each neuron searching its
optimal set of connection with the preceding layer (Vasechkina and
Yarin, 2001; Nariman-Zadeh et al., 2003). Over the last few years, the
ANN has been applied to many geotechnical engineering problems
(Zhu et al., 1998; Goh, 1995; Yang and Rosenbaum, 2002; Lee, 2003;
Najjar and Basheer et al., 1996) and has demonstrated some degree of
success (Shahin et al., 2001).

In this paper, GMDH type neural networks optimized using genetic
algorithms (GAs) are used to model the effects of plasticity index,
natural moisture content, effective overburden stress, and SPT–N60
value as input parameters on undrained shear strength of low plas-
ticity clays using 80 sets of experimentally obtained training and test
data. Sensitivity analysis of the obtainedmodel has been carried out to
study the influence of input parameters on model output. Thereof, a
chart has been produced to estimate undrained shear strength of low
plasticity clays using obtained results from the sensitivity analysis.
Finally, the results of proposed correlation are compared with that of
other correlations.

2. Review of previously proposed correlations

Consistency and strength of fine-grained soils is usually deter-
mined by either unconfined compression (UC) test or unconsolidated-
undrained (UU) triaxial test. The result of unconfined compression
test is expressed as undrained compressive strength (qu) and due to
its simplicity is very popular amongst geotechnical engineers. For
this reason, many of the researchers have proposed correlations bet-
ween qu and SPT–N value. The earliest qu–NSPT correlation is given by
Terzaghi and Peck (1967). They produced the relation given in Table 1,
which in effect means qu=12.5×NSPT. This appears to be a mean value
for various types of fine-grained soils and does not take any other
factors (e.g. PI) into consideration.

The first attempts at including the effect of index properties of fine-
grained soils in the qu–NSPT relation can be traced back to early 1970's
when Sanglerat (1972) suggested different relationships between qu
and NSPT for clays and silty clays. Based on previous works,
Schmertmann (1975) produced a correlation chart from which it can
be concluded that for a constant SPT–N, qu increases with PI. Sivrikaya
and Toğrol (2006) have also proposed a PI dependent correlation for
qu–Nfield as well as qu–N60. A summary of the existing correlations
are presented in Table 2. Besides the correlations expressing qu in
terms of NSPT, a number of other researchers considered the
correlation between undrained shear strength (Su) with NSPT. It is
worth mentioning that by assuming full saturation of the sample in
unconfined compression test the failure envelope may be taken to be
parallel to σn axis (i.e. ϕu=0) and thus undrained cohesion or shear
strength is equal to qu/2.

One of the first attempts at expressing Su (obtained from UU
compression tests) in terms of SPT–N value dates back to 1974
when Stroud proposed three slightly different coefficients for low,
medium and high plasticity clays. Contrary to the other works, Stroud
suggested that for a constant SPT–N value, Su decreases with increase
in PI. On a slightly different approach, Décourt (1990) proposed other
correlations between Su and Nfield and N60. In a comprehensive study
by Sivrikaya and Toğrol (2006), a number of Su–Nfield and Su–N60

correlations based on the results of unconsolidated-undrained (UU)
triaxial tests, were proposed for various types of fine-grained soils. A
summary of the proposed correlations are presented in Table 3.

3. Modelling using GMDH type neural networks

By means of GMDH algorithm a model can be represented as a set
of neurons in which different pairs in each layer are connected
through a quadratic polynomial and thus produce new neurons in the



Table 2
Correlations between qu and SPT–N for various fine-grained soils

Author(s) Soil type qu (kPa)

Terzaghi and Peck(1967) Fine-grained soil 12.5N
Sanglerat (1972) Clay 25N

Silty clay 20N
Schmertmann (1975) High PI clays 25N

Medium PI clay 15N
Low PI clay 7.5N

Nixon (1982) Clay 24N
Kulhawy and Mayne (1990) Fine-grained soil 58N0.72

Sivrikaya and Toğrol (2006) Highly plastic clay 9.7Nfield

13.63N60

Low plastic clay 6.7Nfield

9.86N60

Clay 8.66Nfield

12.38N60

Fine-grained soil 8.64Nfield

12.36N60

Table 3
Relations between SPT–N and Su for fine-grained soils

Author Soil type Su (kPa)

Stroud (1974) PIb20 6–7 N
20bPIb30 4–5 N
PIN30 ≈4.2 N

Décourt (1990) Clay 12.5 N
Clay 15 N60

Sivrikaya and Toğrol (2006) CL 3.97 Nfield

5.82 N60

CH 5.9 Nfield

8.76 N60

Clay 5.13 Nfield

7.57 N60

Fine grained soil 4.68 Nfield

6.97 N60
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next layer. Such representation can be used to map inputs to outputs.
The formal definition of the identification problem is to find a function
f̂ that can be approximately used instead of the actual one, f in order
to predict output ŷ for a given input vector X= (x1, x2, x3, …, xn) as
close as possible to its actual output y. Therefore, givenM observation
of multi-input-single-output data pairs:

yi = f xi1;xi2;xi3; N ;xinð Þ i = 1;2 N Mð Þ: ð2Þ

It is now possible to train a GMDH type neural network to predict
the output values ŷ for any given input vector X=(xil, xi2, xi3,…, xin),
that is:

ŷi = f̂ xi1;xi2;xi3 N ;xinð Þ i = 1;2…Mð Þ: ð3Þ

The problem is now to determine a GMDH type neural network so
that the square of difference between the actual output and the
predicted one is minimised, that is:

∑
M

i = 1
f̂ xi1;xi2;xi3; N xinð Þ−yi
h i2

Ymin: ð4Þ

General connection between inputs and output variables can be
expressed by a complicated discrete form of the Volterra functional
series in the form of:

y = a0 + ∑
n

i = 1
aixi + ∑

n

i = 1
∑
n

j = 1
aijxixj + ∑

n

i = 1
∑
n

j = 1
∑
n

k = 1
aijkxixjxk +…; ð5Þ

which is known as the Kolmogorov–Gabor polynomial (Ivakhnenko,
1971; Farlow, 1984; Iba et al., 1996; Sanchez et al., 1997; Nariman-
Zadeh et al., 2003). This full form of mathematical description can
be represented by a system of partial quadratic polynomials consisting
of only two variables (neurons) in the form of:

ŷ = G xi;xj
� �

= a0 + a1xi + a2xj
+ a3x2i + a4x

2
j + a5xixj:

ð6Þ

There are two main concepts involved within GMDH type neural
networks design, namely, the parametric and the structural identifi-
cation problems. In this way, some works by Nariman-Zadeh, et al.,
(2002, 2003 and 2005) present hybrid GA and singular value decom-
position (SVD) method to optimally design such polynomial neural
networks. The methodology in these references has been successfully
used in this paper.

A non-commercial code (GEvoM) for the evolved GMDH type
neural network has been developed by the third author and details
about the code and general description of the technique may be found
in the following web site: http://research.guilan.ac.ir/gevom.

4. The database

The data used in this study were gathered from the National
Iranian Geotechnical Database, which has been set up in the Building
and Housing Research Centre (BHRC) (Kalantary, 2005).The database
has been established under a mandate from the Management and
Planning Organization (MPORG), which supervises the professional
activities of all of the consultancy firms in Iran.

The data compiled in the database have been extracted from routine
geotechnical investigation reports by accredited geotechnical engineer-
ing consultancy firms. It is common practice by these firms to use either
rotary or percussion drillingmethods. However, for the purposes of this
study, meticulous care was taken to exclude any data from doubtful
procedure and/or non-standard drilling and sampling methods.

Furthermore, as a precautionary measure, only the results
obtained from rotary drilling procedure were selected. This selection
criterion has a twofold benefit. Firstly, since the borehole size in this
type of drilling is usually less than 116 mm, no correction factor is
needed for borehole size (i.e. CB=1), and secondly, since Shelby tube
undisturbed sampler is commonly used in rotary drilling, it can be
ensured that the data used in this study originated from a uniform
procedure. It must also be mentioned that as a general practice, safety
hammers are used by most of the consultancy firms in Iran and
the SPT sampler is not usually fitted with liner (i.e. CS=1). Hence, by
neglecting CC, CBF and CA, only the correction factors relating to rod
length and energy correction factor of the hammerwere considered in
this study. Thus:

N60 = 0:83×CRð ÞNfield: ð7Þ

The extracteddata from the reports are kept in a standardized format
in the databank. Under this format, various data strings may
be simultaneously specified for data search. For the purposes of the
present study, a number of criteria were set for data selection. Initially,
all of the available SPT results infine-grained soils with the classification
of CL, CH, ML, MH and CL-MLwere identified. From amongst these data,
those that had the other relevant data to this study were virtually
separated. The relevant data included plasticity index (PI), natural
moisture content (Wn) and undrained shear strength evaluated fromUU
triaxial test in the same layer. In addition to the above mentioned
parameters, theunitweightof the overlaying layersmust alsobeknown.

A total of 436 cases which conformed to the basic selection criteria
were gathered. Most of these fell within the low plastic clay category.
Due to the fact that undisturbed sampling of this type of soil is difficult
(Peters, 1988) and it was expected that some of the triaxial test results
might give misleading information about the shear strength of the
samples, a number of measures were deemed necessary to

http://research.guilan.ac.ir/gevom


Fig. 1. Geographical distribution of the data on the map of Iran.

147F. Kalantary et al. / Engineering Geology 104 (2009) 144–155
overcome this issue. It was decided to exclude all datasets with N b5,
since weak samples were more prone to disturbance. Furthermore, all
samples that did not have clear descriptions and/or photographs
were excluded. As a result of the data filtering process, the total
number of the remaining cases was reduced to 80. These data related
to samples that had no visible fissures or deformities.
Fig. 2. Distribution of SPT–N60, PI
It is worth mentioning that the datasets finally used in this study
were extracted from 39 different geotechnical investigation reports
produced by eight well-know consultancy firms in the past 10 years.
Geographical distribution of the data is shown on the map of Iran in
Fig. 1. Distribution of SPT–N60, Cu, PI, and Wn with depth is presented
in Fig. 2. Furthermore, in order to provide a general view on the degree
, Wn, σ′p and Su, with depth.



Fig. 3. Distribution of plasticity characteristics of the samples.
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of consolidation of the samples, the pre-consolidation pressures of the
samples were evaluated by using the following empirical correlation
(NAVFAC DM-7.1, 1982):

σ Vp =
Su

0:11 + 0:0037PI
: ð8Þ

The variation of pre-consolidation pressure with depth is also
shown in Fig. 2. Most of the SPT–N60 and Su lay between 5 and 30, and
35–100 kPa range respectively. It is also worth noting that most of
the data are from tests on low-plasticity clays (CL). Distribution of
plasticity characteristics of the samples are shown in Fig. 3.

5. Modelling of Su by GMDH type neural networks

Modelling of the undrained shear strength of fine-grained soils (Su)
by GMDH type neural networks require identification of appropriate
input parameters. It has been shown by many researchers (Stroud,
1974; Schmertmann, 1975; Sivrikaya and Toğrol, 2006) that the
plasticity index (PI) influences the correlation between undrained
shear strength of the fine-grained soils and corrected SPT blow counts
(N60). Furthermore, as mentioned in the Introduction, it is likely that
the effective overburden stress (σ′n) also affects the SPT–N in this
type of soils, and thus it ought to be included in the investigation.
The natural moisture content (Wn) also influences the in situ shear
strength of fine-grained soils and thereby it could affect the SPT–N.

In view of the fact that the evolutionary process of selecting the
configuration of GMDH type networks selects the best possible com-
binationof inputs, it doesnotnecessarily use all the inputs in constructing
the model. In other words, the GMDH type networks is intrinsically
capable of determining the degree of influence of each input parameters
on themodel output and thus anypossible redundancyof eachparameter
will automatically be determined. Thus, the above-mentioned variables
(PI, N60, σ′n andWn) were chosen as the primary input parameters.

As mentioned in the previous section, 80 cases obtained from the
experimental data (input-output pairs)were selected. However, in order
to demonstrate the prediction ability of the evolved GMDH type neural
networks, the data have been divided into two different sets, namely,
Fig. 4. Evolved structure of the generalized GMDH neural net
training and testing sets. The training set, which consists of 60 out of 80
inputs-output data pairs, is used for training the neural networkmodels
using the evolutionary method of this paper. The testing set, which
consists of 20 unforeseen input-output data samples during the training
process, is merely used for testing to show the prediction ability of such
evolvedGMDH type neural networkmodels during the training process.

TheGMDHtypeneural networks are nowused for such input-output
data to find the polynomial model of undrained shear strength of low
plasticity clays in respect to its effective input parameters. In order to
genetically design such GMDH type neural network described in the
previous section a population of 50 individuals with a crossover
probability of 0.7 and mutation probability of 0.07 has been used in
300 generations that no further improvement has been achieved for
such population size. The structure of the evolved 3-hidden layer GMDH
type neural networks is shown in Fig. 4 corresponding to the genome
representations of ababacccbcadbdcd for undrained shear strength of
low plasticity clays in which a, b, c, and d stand for plasticity index (PI),
natural moisture content (Wn), effective overburden stress (σ′n), and
SPT–N60 value, respectively. The good behavior of theGMDH type neural
network model is also depicted in Fig. 5 for testing data of undrained
shear strength of low plasticity clays.

It is clearly evident that the evolved GMDH type neural network in
terms of simple polynomial equations could successfully model and
predict the output of testing data that has not been used during the
training process. As a measure of the accuracy of themodel, root mean
squared errors (RMSE) of both training and testing sets of data are
evaluated to be 7.4 and 8.8 kPa, respectively.

6. Sensitivity analysis

The polynomial model produced by the evolved GMDH type neural
network is in the form of a complex equation and thus the effect of
each parameter cannot directly be examined. Instead, the sensitivity
of the model to each parameter is evaluated by examining the vari-
ation of one parameter with respect to the specified parameter with
constant values for the remaining variables. Since extrapolation may
result in an erroneous outcome, the variation of each parameter is
kept within the bounds of the input data range.

In other words the considered variation of N60, ,σ′n PI, and Wn is
limited to the values stated below:

N60=5–30,
σ′n=50–250 kPa,
PI=5–20%,
Wn=5–25%.

Limiting N60≥5, meant that the equation of the correlation did not
necessarily pass through the origin (i.e. Su=0). Obviously, this condition
could be imposed in the modelling. However, it was noted that this had
an adverse effect on the overall performance of the model. Hence, the
sensitivity analysis was carried out within the bounds of the above-
mentioned data limits.
work for undrained shear strength of low plasticity clays.



Fig. 5. Comparison of experimental values of Su of low plasticity clays with the predicted
values using evolved GMDH neural networks for testing data.
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First of all the effect of moisture content on the variation of
Su–N60 was examined and it was noticed that this parameter does
not greatly influence the correlation. Fig. 6 shows the variation of
Su–N60 under the 100 kPa effective overburden stress for various
PI values, with the upper and lower values of moisture content.
It can be noted that the trend of variationwith high and lowmoisture
content is the same and the maximum difference occurs at low
values of SPT–N60. Since the maximum difference at N60=5 is about
15 kPa, it can be concluded that moisture content has little bearing on
the Su–N60 correlation.
Fig. 6. Variation of Su–N60 under 100 kPa overburden stress for variou
The second parameter considered was effective overburden stress.
Variations of Su–N60 under different overburden stresses are pre-
sented in Fig. 7. In these figures the moisture content was 10%. It can
clearly be noticed that at low values of N60, overburden stress has no
effect on the Su–N60 correlation, whereas at high values of N60,
marked differences can be seen. In other words, for N60N15, ove-
rburden stress greatly affected the correlation of Su–N60 in as much as
Su can increase by three times.

Finally, the effect of plasticity index on correlation of Su–N60 is
examined. Fig. 8 a and b show the variations of Su against PI for
different N60 values under 100 and 250 kPa effective overburden
stress, respectively. It can be noticed from these figures that at very
low values of PI, the Su–N60 correlation is greatly affected by PI,
whereas at 15bPIb20 the correlation is almost not affected by PI.
Inversely, at high values of N60 (N60N15), PI has a major effect on the
correlation. It can also be concluded from these two figures that Su
increases with N60 at a decreasing rate with respect to increase of PI.
Furthermore, for a constant N60 value greater than 15 the estimated
values of undrained shear strength decreases with increase in PI
whereas for low values of N60, undrained shear strength increases
slightly with PI value up to PI=10. In all of the figures (Figs. 6–8), the
natural trend of increase for Su with N60 exists.

7. Proposed method

In view of the insight gained by the sensitivity analysis, it is pro-
posed to express N60 in terms of the mean values of undrained shear
strength Su for various moisture contents, since it was determined
s PI values, with the upper and lower values of moisture content.



Fig. 7. Variation of Su–N60 under different effective overburden stress.
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that moisture content has negligible effect on this variation. By in-
spection, it can be noted that a relatively good fit may be obtained by
linear regression. This is repeated for every PI (5, 10, 15 and 20) and σ′n
(50,100,150, 200 and 250 kPa) value and thus 20 linear equationsmay
be obtained. The coefficients of determination (R2) for the fitted lines
are all above 0.8 and for half of them; the R2 value was above 0.95.
These values indicate relatively good fit. The coefficients of these
equations have subsequently been evaluated and their variation with
PI values is determined. It was found that a second order polynomial
produces the best fit to this variation with an average R2=0.97.
Thereby, five equations for the five effective overburden stresses were
obtained, expressing the Su in terms of N60 and PI value:

σ VN = 50kPa Su = PI2 0:0055N−0:008ð Þ−PI 0:176N−0:3ð Þ + 1:7N + 41 ð9� aÞ
σ Vn = 100kPa Su = PI2 0:0125N−0:1ð Þ−PI 0:425N−3:4ð Þ + 4:1N + 16:5 ð9� bÞ
σ Vn = 150kPa Su = PI2 0:0216N−0:222ð Þ−PI 0:721N−7:4ð Þ + 6:9N−19 ð9� cÞ
σ Vn = 200kPa Su = PI2 0:0306N−0:33ð Þ−PI 1:016N−11:1ð Þ + 9:4N−50:5 ð9� dÞ
σ Vn = 250kPa Su = PI2 0:0371N−0:423ð Þ−PI 1:22N−14ð Þ + 11:1N−75: ð9� eÞ

These correlations are plotted in Fig. 9 a–e. From these figures, it
may be noted that for N60≈8–12, the correlation is almost
independent of PI variation. For a constant value of N60N12
undrained shear strength appears to decrease with increase of PI,
whereas for N60b8 the reverse is true. Further investigation into the
rate of this variation indicated that if undrained shear strength is
normalized with respect to the square root of effective overburden
stress Su=

ffiffiffiffiffiffiffiffi
σ Vn

p� �
, a unified chart (Fig. 10) for the correlation of Su–N60

may be obtained for 5bPIb20. It must, however, be emphasized that
the validity of this type of correlations outside the considered range
needs further verification and will almost certainly follow a different
pattern.

8. Comparison

In order to examine the performance of the proposed model,
statistical comparison of the response of the correlations pro-
posed by Stroud (1974) and Sivrikaya and Toğrol (2006) and that
of the model presented in this study to the available datasets is
made.

Out of the 80 cases initially used for the development of the model
in this study, 56 cases had CL classificationwith overburden stress less
than 250 kPa. Thus, the Nfield and N60 values of this group of cases
were used as input for the appropriate correlations from the above
mentioned references, and the undrained shear strength (Su) estima-
tions were obtained. The predictions of each correlation were com-
pared with the measured values.

Fig. 11 presents this method of comparison. The mean values and
the standard deviations (SD) are quoted for quantitative assessment.
Obviously, the less the scatter around the 1:1 line is, the better the
performance of the correlation is. Furthermore, in order to provide



Fig. 8. variation of Su–PI for different N60 values under 100 and 250 kPa effective
overburden stress.
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better means of visual judgment, two other (broken) lines indicating ±
20% deviation from the perfect agreement are also drawn.

Fig. 11 a and b present the predictions of the correlation
proposed by Stroud (1974), using Nfield and N60 respectively. It can
be noted that a smaller scatter is encountered if N60 is used in the
correlation. The mean value and the standard deviation reduce from
1.87 and 0.7 respectively to 1.41 and 0.56. However, both figures
indicate that the correlation proposed by Stroud (1974) over-
estimates the values of Su.

Fig. 11 c and d present the predictions of the two sets of cor-
relations proposed by Sivrikaya and Toğrol (2006) for Nfield and N60.
It is very interesting to note that not much difference exists between
the scatter of the results in the two figures. The mean values of the
estimated to measured undrained shear strengths are 1.13 and 1.23,
and the standard deviations are 0.48 and 0.54 respectively. This is a
clear indication that the two proposed correlations are well
adjusted.

Fig. 11 e shows the predication ability of the proposed model. The
mean values of both of the above-mentioned correlations are above
unity. This indicates the tendency of these correlations to over-
estimate Su, whereas, the mean value of the predicted to measured
ratio of the Su by the proposed method in this study is slightly below
unity. Furthermore, a marked decrease in the scatter of the results
may also be noted (SD=0.25) in comparison with the other two cor-
relations, which can be attributed to enhanced performance due to the
inclusion of the extra parameter (namely effective overburden stress)
in the modelling.

Moreover, root mean square error (RMSE) and values account for
(VAF) of the predicated values by the above-mentioned correlations
were calculated and presented in Table 4. The results of these sta-
tistical evaluations also confirm the improved accuracy gained by the
proposed method.

An alternative method of comparison is to present a log-normal
plot of the ratio of the estimated values of Su to the measured values
versus their cumulative average or otherwise known as cumulative
probability. Long and Shimel (1989) and Alsamman (1995) have
shown that using such statistical presentation will provide valuable
insight and quantified measure of the prediction ability of empirical
correlations.

Hence, for the current set of data, the ratio of calculated to
measured values of undrained shear strength, (Su(e)/Su(m)), is arranged
in ascending order numbered (1, 2, 3,…i,…n) and a cumulative
probability, P, is determined for each undrained shear strength value
as:

P =
i

n + 1ð Þ ð10Þ

where i is the number of value considered in P. The following points
are note-worthy in assessing the bias and dispersion associated with a
particular predictive method:

(1) The ratio of calculated to measured value at P=50% probability
is a measure of the tendency to overestimate or underestimate
the undrained shear strength. The closer the ratio is to unity,
the better the agreement.

2) Log-normally distributed data will plot on a straight line
3) The slope of the line through the data points is a measure of the

dispersion or standard deviation. The flatter the line is, the
better general agreement becomes.

Fig. 12 shows the plot of estimated to measured undrained shear
strength, (Su(e)/Su(m)), values versus cumulative probability for the
present cases. For the probability of 50%, the (Su(e)/Su(m)) value for
proposed and Sivrikaya and Toğrol (2006) correlations is close to
unity, whereas the ratio for Stroud correlation based on Nfield and N60

is about 1.3 and 1.6 respectively, demonstrating a trend toward
overestimation.

It can be noted that (Su(e)/Su(m)) value at P=50% for the Nfield based
correlation of Sivrikaya is slightly lower than those of N60 based
correlation. This discrepancy could be as a result of the fact that the
SPT results used in this study were obtained by safety hammers,
whereas the proposed correlation by Sivrikaya and Toğrol (2006) for
Su–Nfield were based on the SPT results using donut hammerwhich has
a smaller energy ratio (ERr=0.45) than safety hammer (ERr=0.50)
(Clayton, 1990).

Both of the correlations proposed by Stroud and Sivrikaya
exhibit a higher dispersion than the proposed correlation, as
indicated by the flatter slope of the line. It is obvious that the
results for the proposed correlation are closer to log-normal
distribution than those for Stroud (1974) and Sivrikaya and Toğrol
(2006) correlations.

9. Summary and conclusions

It has been attempted in this study to deploy a powerful
system identification technique to develop the Su–N60 correlation.
An optimized GMDH type neural network with genetic algorithm
has been used to develop a mathematical model that intricately
defines the interdependencies of the involved variables.

The sensitivity analysis of the obtained model has been carried
out to study the influence of input parameters on model output and



Fig. 9. Proposed Su–N60 correlation for 50, 100, 150, 200 and 250 kPa effective overburden stress.
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was limited to the actual bounds of the data range (i.e. N60=5–30,
σ′n=50–250 kPa, PI=5–20%, Wn=5–25%) in order to minimize the
deviation. It is acknowledged that should a wider range of
parameters be considered, a varied function would probably be
obtained, but within the bounds of the data range, a relatively
accurate model has been achieved.

The sensitivity analysis shows that natural moisture content has
negligible effect on the correlation, whereas both PI and σ′n influence
the function. The influence of effective overburden stress is the
greatest at higher values of SPT–N and lower values of PI.

Considering the knowledge obtained from the sensitivity analysis,
a unified chart has been developed. By this chart, undrained shear
strength of the soil (Su) may be determined, provided N60, PI and σ′n
are known. An interesting feature of this chart is that for N60N10, Su
increases with the decrease of PI, whereas for N60b10 the reverse is
true. This is in partial agreement with the works of Stroud (1974)



Fig. 10. Proposed correlation between Su=
ffiffiffiffiffiffiffiffi
σ Vn

p� �
for low plasticity clays.
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who had shown that for a constant value of SPT–N, Su is inversely
proportional to PI. However, Décourt (1990) and Sivrikaya and Toğrol
(2006) have suggested that the opposite is true (i.e. Su is directly
proportional to PI).

Finally, the performance of the suggested approach was validated
by comparison with the predictions of the correlations proposed by
Stroud (1974) and Sivrikaya and Toğrol (2006) for low plasticity clays.
The bias and dispersion of the outcomes were presented in a format to
facilitate quantified assessment of the performances.

It has been shown that the correlation proposed by Stroud
(1974) excessively overestimates the results. However, should N60

be used instead of Nfield, the outcome improves considerably, con-
firming the notion suggested by McGregor and Duncan (1998), that
it is sound to use N60 instead of Nfield for correlations proposed be-
fore 1990.

The performance of the correlations proposed by Sivrikaya and
Toğrol (2006) for low plasticity clays attained a high rating in this
comparison. The predictions of the two correlations based on Nfield

and N60 compared well with each other, which indicates that the two
correlations are well adjusted.

However, the predictions of the proposed approach show a def-
inite improvement even in comparison with the works of Sivrika-
ya and Toğrol (2006), which is a clear indication of the merits of the
approach.

The data used in this study was mostly limited to low plasticity
(CL) clays, hence the use of the obtained model must be restricted to
this type of soils. However, the same approach may be applied to an
extended database with wider range of input parameters to obtain
more comprehensive correlation.
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Fig. 11. Measured versus estimated undrained shear strength by different correlations.

Table 4
RMSE and VAF for different correlations

Su=(6–7)Nfield Stroud (1974) Su=(6–7)N60 Stroud (1974) Su=3.97Nfield Sivrikaya and Toğrol (2006) Su=5.82N60 Sivrikaya and Toğrol (2006) Proposed method

RMSE 62.3 39.5 27.2 32.8 14.59
VAF (%) 9 22 38 28 72
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Fig. 12. Comparison of correlations' results using the probability approach.
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